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Generalized vortex methods for free-surface flow problems 
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The motion of free surfaces in incompressible, irrotational, inviscid layered flows is 
studied by evolution equations for the position of the free surfaces and appropriate 
dipole (vortex) and source strengths. The resulting Fredholm integral equations of the 
second kind may be solved efficiently in both storage and work by iteration in both 
two and three dimensions. Applications to breaking water waves over finite-bottom 
topography and interacting triads of surface and interfacial waves are given. 

1. Introduction 
It is well known that the solution to the Dirichlet and Neumann problems for 

Laplace’s equation may be expressed in terms of boundary integrals of source or 
dipole distributions. The equations determining the source and dipole strengths are 
Fredholm integral equations of the first and second kind, as enumerated in table 1. 
These equations are normally solved by direct matrix-inversion techniques such as 
Gaussian elimination. However, when the problems are formulated in terms of 
integral equations of the second kind, i t  is not necessary to resort to such costly 
inversion methods ; the required Fredholm equations have globally convergent 
Neumann series, so they may be solved by simple iterative procedures. These iterative 
methods lead to new and efficient techniques for the solution of time-dependent, 
irrotational, incompressible flows in layered media in the presence of both free 
surfaces and solid bodies. 

With N points used to resolve the fluid interfaces (in either two or three space 
dimensions), our iterative boundary integral methods require only O ( N )  computer 
storage and O ( N 2 )  arithmetic operations per time step. These storage and operation 
counts should be contrasted with more conventional methods based on direct matrix 
inversion that require O ( N 2 )  storage and O ( N 3 )  work per time step. As problem 
complexity increases, our new methods offer increasing advantages over more 
classical approaches (see e.g. Chan & Street 1970; Longuet-Higgins & Cokelet 1976). 

Previously we have obtained results by our methods for multifrequency Rayleigh- 
Taylor instability of semi-infinite (Baker, Meiron & Orszag 1980) and thin (Verdon 
et al. 1982) fluid layers. In  the present paper, applications to nonlinear water waves 
are given as well as a detailed derivation of the governing equations. 

In  $2 we derive the kinematical and dynamical equations used to evolve free surface 
flows. I n  $ 3  applications to large-amplitude surface and interfacial water waves are 
given. I n  $4, the methods are extended to  flows over bottom topography and 
applications to  nonlinear waves are given. Then, in $ 5  the interaction of triads of 
surface and interfacial waves is studied and the results are compared with the 
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Representation 

Problem type Source Dipole 

Dirichlet First kind Second kind 
Neumann Second kind First kind 

TABLE 1, Classification of Fredholm integral equation by problem type and choice of representation 

predictions of asymptotic theory. Finally, in $6, some extensions of the present 
methods are described. A new formulation of the equations describing nonlinear 
interfacial waves of permanent form is given in the appendix. 

2. Equations of motion 
I n  this section, we derive evolution equations for the motion of interfaces between 

layers of incompressible, inviscid, irrotational fluid. The density is constant in each 
layer, but may jump in value across an interface. Thus vorticity will in general be 
created baroclinically a t  interfaces but not in the interior of the layers. Consequently, 
the interfaces may be regarded as vortex sheets whose strength changes in time owing 
to the presence of the density discontinuities. The task a t  hand is to obtain equations 
describing the motion of the interface and the production of vorticity a t  the interface. 

Since a vortex sheet is closely related to a surface distribution of dipoles, we may 
take particular advantage of several important results from classical potential theory 
(see Kellogg 1953 ; Bergman & Schiffer 1953). The flow in each layer is incompressible 
and irrotational, so there is a piecewise smooth velocity potential 4 satisfying 
Laplace’s equation. Classical potential theory shows that the potential may be 
written as a boundary integral of dipoles. I n  particular, this representation implies 
a continuous normal derivative for the potential at each interface, thus satisfying 
the kinematical condition of continuous normal velocity. The dipole strength p is 
related to the jump in potential across an interface. Since the vortex-sheet strength 
r is the jump in tangectial velocity a t  the interface, there is an obvious relationship 
between r and p. Specifically, in two dimensions, r is related to the arclength 
derivative of p. Thus we have a choice of calculating the time evolution of r or p. 
I n  specific applications, we shall see that the numerics dictates which one should be 
used. 

The most important result for our purposes from classical potential theory is that  
the Dirichlet or Neumann problems for Laplace’s equation may be expressed as 
Fredholm integral equations of the second kind and that these equations may be 
solved iteratively as their Neumann series are globally convergent. We shall also show 
that the evolution equation for the dipole strength or the vortex-sheet strength is a 
Fredholm integral equation of the second kind and that it has a convergent Neumann 
series. These facts allow an efficient numerical procedure for calculating the motion 
of free surfaces. 

In this paper we restrict attention to two-dimensional flows that are periodic in 
the horizontal coordinate 5 with period 2n (for a discussion of problems involving 
radiation boundary conditions see Baker, Meiron 01: Orszag 1982). The vertical 
coordinate is denoted by y. 

The potential of a dipole layer of strength p(e) distributed along the interface 
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FIGURE 1 .  Flow geometry for interfacial flow between two fluids of infinite extent. 

parametrized by x( e ) ,  y( e )  is 

where G = (4n)-11n[(x-x(e))2+ (y-y(e))2] is the free-space Green function, v is the 
downward normal (see figure 11, and sz = x;+& The subscript e denotes different- 
iation with respect to  the label e ,  which will later be chosen to be a Lagrangian 
variable. The normal derivative of G in (2.1) is taken with respect to  the normal a t  
the integration point labelled by e : 

We introduce the notation z = x + i y  for the complex field point, Q, = q5 +i+ for the 
complex potential, where @ is the stream function, and q = u+iv for the complex 
velocity, where u and v are respectively the x and y velocity components. Then 
q* = dQ,/dz, where the asterisk indicates complex conjugation. 

Using (2.1), the complex potential may be written as the integral 

where the integrations are to  be performed along the interface, which is parametrized 
as z(e) with 0 < e < 277 extended periodically. Note that the range of integration is 
finite ; the contributions to the potential from periodic extensions of the interface 
has been summed in closed form. The contribution to the potential from the integral 
(2.3) approaches a constant exponentially fast as R --f 00, where R is a measure of 
the distance from the interface. (On the other hand, for interfaces that are finite closed 
curves, @(z)  decays like 1/R as R -+ 00.) I n  (2.3) QE accounts for the presence of any 
external flow that does not vanish far from the interface. 
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In  general, several interfaces may be present. The potential is then written as a 
sum of integrals along each interface. However, for simplicity of notation and 
presentation we consider only one interface in the subsequent derivation of the 
governing evolution equations. Our results extend immediately to the case of more 
interfaces, provided that they do not intersect one another. 

We shall use subscript 1 (or 2) to refer to quantities of the fluid below (or above) 
the interface (see figure 1). Recall that  the potential is discontinuous across the 
interface, while the stream function is continuous. Thus the dipole strength, which 
is the jump in potential across the interface, may be written in terms of the complex 
potential : 

The average value of the complex potential a t  the interface, 

I.@) = @I@) - @,(el. 

@(el = i(@',(e)+@,(e)),  (2.4) 

may be calculated by taking the principal value of the integral in (2.3). Consequently 
the average complex velocity a t  the interface is 

q*(e)  = @ e ( e ) / z e ( e ) .  (2.5) 

The complex velocity may be expressed directly in terms of a boundary integral by 
differentiating (2.3) and then integrating by parts : 

1 2n 
u(z) - iv (z )  = - y ( e )  cot+[z-z(e)] d e + & z ( z ) .  (2.6) 

47ri s, 
Here QE is the external flow corresponding to  the potential @*, and 

~ ( e )  = r(e) se = P e ,  

where 8; = z,* ze. The integral in (2.6) is a form of the Biot-Savart integral in terms 
of the unnormalized vortex-sheet strength y .  Once again, the velocity a t  the interface 
determined by the principal value of the integral is the average of those just above 
and below the interface. 

It is conventional to use the average of the velocities on either side of the sheet 
as the velocity for the motion of the Lagrangian points describing the vortex sheet. 
However, this choice is not necessary and is, in some cases, inconvenient. More 
generally, we define the velocity of a Lagrangian point, labelled by e ,  as a weighted 
average of the velocities across the interface. I n  this way, we still satisfy the 
kinematics but retain some control over the positioning of the Lagrangian markers. 
Thus 

- (e , t )  h * = q*(e) = q * ( e ) + - - - ,  EY 
Bt 2 2 ,  

(2.7) 

where la1 < 1 is the weighting factor. Note that, by choosing a = 1 or - 1, the 
Lagrangian motion follows the lower or upper fluid a t  the interface. Equation (2.7) 
is the kinematical evolution equation for the interface. 

The evolution equation for the dipole strength or the vortex-sheet strength is 
derived as follows. First, evaluating Bernoulli's equation on either side of the 
interface using the Lagrangian time derivative defined by (2.7) gives 
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Here g is the acceleration due to gravity, p is the density and p is the pressure, which 
is assumed to be continuous across the interface. If surface forces such as surface 
tension are present, the pressure will jump in value by a known amount, which may 
be easily incorporated into (2.8), (2.9). 

From (2.6) i t  follows that 
(1-a)Y ql* = a“*+ ~ 

0-. 

Then subtracting (2.8) from (2.9) gives 

(2.10) 

(2.11) 

(2.12) 

Differentiating this equation with respect to e gives a similar equation for y :  

Similarly, by adding (2.8) and (2.9), we obtain 

p + 2gy = 0. (2.13) 

Eliminating p between (2.12) and (2.13) gives 

The above equation is the evolution equation for p as the interface advects. By 
differentiating (2.14) with respect to  e ,  there results an evolution equation for y :  

The parameter A in the above two equations is the Atwood ratio, defined as 

(2.16) 

The quantity a@/& in (2.14) is obtained by Lagrangian time differentiation of (2.3). 
Specifically, 

1 a@ 1 2n 

-(e) at = -Ps 4nz. 0 [ g ( e ’ ) z , ( e ’ ) + , u ( e ’ ) q ‘ , ( e ’ )  cot+[z(e)-z(e’)]de’ 

Since &D/at involves an integral of d,u/dt, (2.14) is a Fredholm integral equation of 
the second kind for dp/ at. Similarly, an integral expression for dq*/ is easily obtained 
that makes (2.15) a Fredholm equation of the second kind for ay/at. 

The basis for the methods advocated in this paper is that  (2.14) has a globally 
convergent Neumann series. To prove this we follow Bergman & Schiffer (1953). First 
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we rewrite (2.14) as 
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to show explicitly the nature of the Fredholm equation, where h = A. Here r (e )  
contains all terms not dependent on d,u/at. For the Neumann series to converge, the 
value of h must be smaller than the absolute value of any eigenvalue A, of the integral 
equation 

(2.19) X , ( e )  = - 2 P X,(e’)  Im {z , (e ’ )  cot 2 [ z ( e )  - z (e’ )  I} de’. 
27r 6” 

Note that A, and X , ( e )  may be complex. 
Next, define the complex harmonic function 

w = w, + iWi 
(2.20) 

The real and imaginary functions w, and wi are harmonic in the regions above aJld 
below the interface (but w is not necessarily analytic). The jump of w a t  the interface 
is X,, so that the limiting values of w are 

1 1  
w1= 2 -[--1]X,, An 

w2 =-[-+l]X,, 2 h, 
1 1  

(2.21) 

(2.22) 

where we have made use of (2.19) to eliminate the principal-value integral. Using 
Green’s first identity on the complex harmonic function w, the continuity of the 
normal derivatives of w1 and w2, and (2.21) and (2.22), we obtain 

1 1  
jJRVw.Vw*dA=-- 2 [ - - -1  A n  ] p , ( e ) F s e d e ;  

j Vw . Vw* d A  = - A [ + 1 1  jo2zXn ( e )  - s, de. 

(2.23) 

(2.24) 
i3W* 

2 A n  av R2 

The semi-infinite regions R, (R,) have width 277 and lie below (above) the interface, 
and v is normal to the interface pointing into the region R,. The integrals on the 
left-hand side of (2.23) and (2.24) are positive, so that 

(2.25) 

On the other hand, adding (2.23) and (2.24) shows that the integral in (2.25) is real. 
Since the integral in (2.25) does not vanish, it follows that A, is real with 

A; > 1 .  (2.26) 

In periodic semi-infinite geometry, neither A, = f 1 is an eigenvalue. 
At the interface it is necessary to  evaluate the integrals corresponding to the 

potential or velocity in the sense of a principal value. These principal-value integrals 
may be made regular by the appropriate subtraction of a known principal-value 
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integral. Recalling the identity 

~~‘~cot:lz(e)-z(e’)]- dz (e’)de’  = 0, 
de 

we rewrite (2.3) and (2.6) evaluated a t  the interface in the non-singular forms 

-p(e)] cot4 [ z ( e )  
dz 

-z (e’ ) ]y  (e’)de’, 
de 

(2.27) 

(2.28) 

The expressions for X ) / a t  (see (2.17)) and dq*/dt also contain principal-value 
integrals. These integrals are regularized by differentiating (2.27) and (2.28) with 
respect to t ,  avoiding use of (2.3) and (2.6). 

These integrals may be accurately evaluated numerically by the trapezoidal rule 
(see e.g. Baker 1980). Derivatives with respect to e are usually computed using cubic 
spline approximations. In  practice, we have found that for highly distorted periodic 
geometries, the dipole form (2.27) gives more-accurate and instability-free results. 
Numerically, the vortex form (2.28) is more susceptible to round-off. As e +e’ 
cancellation occurs due to the presence of the derivative term ze in the integrand, 
which is less accurately known. 

To summarize, the numerical procedure using the dipole representation is as 
follows. First the complex potential @ ( e )  is calculated from (2.3). Then the complex 
velocity q ( e )  is obtained from (2.5) and the interface is marched forward using (2.7). 
Next the inhomogeneous term r(e) in (2.18) is evaluated from (2.14) and (2.17). 
Finally, (2.18) is solved (by accelerated iteration) for a,u/i?t so that ,u can also be 
marched in time. This completes a time step. The time-stepping is actually performed 
using a fourth-order Adams-Moulton predictor-corrector scheme. A similar procedure 
is used to march the vortex sheet equations in time in cases (like those involving 
radiation boundary conditions) where vortex layers seem computationally more 
practical than dipole layers. 

3. Application to steady and unsteady surface and interfacial waves 
A simple but non-trivial test of the time-dependent numerical scheme is obtained 

by calculating the propagation of steady interfacial waves. The initial wave profiles 
and vortex-sheet strength are obtained by solving the nonlinear equations (A 2)-(A 5) 
derived in the appendix for Atwood ratios A = 1.0 (a surface wave) and A = 0.8181. 
The wave heights are chosen to be h = 0.4 ( A  = 1.0) and 0-36 ( A  = 0.8181), where 
h is the average of the crest and trough amplitudes so both test cases correspond to 
nonlinear waves. Also, we choose g = 1 .  

The accuracy of t  he time-dependent solution is checked by comparing the locations 
of the markers with the exact solution at  time t = 0 translated in the x-direction 
by an amount ct, where c is the nonlinear phase speed of the wave. Xumerical solution 
of the nonlinear integral equations (A 2)-(A 5) gives c = 1.082 for the surface wave 
and c = 0.952 for the interfacial wave. The results obtained by time integration of 
the equations of $2 using N = 128 points and a time step At = are plotted in 
figures 2 and 3 a t  t = 0,277 when the waves have propagated through about one period. 
At these times the numerical and theoretical profiles agree to one part in lo4. 
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FIQURE 2. A plot of the Stokes wave profile ( A  = 1) at times (a )  t = 0 and ( b )  t = 2n. The dots indicate 
the numerically computed position of the intedace. The solid line is obtained by solving the 
nonlinear integral equations (A 2)-(A 5). 

FIQURE 3. Same as figure 2 except A = 08182. 

There are several invariants of the flow. In particular, there is an invariant 
associated with conservation of energy. Strictly speaking, the total energy for 
two-dimensional stratified flow is infinite. However, the perturbation energy of the 
disturbed flow away from a steady-state value, evaluated over one spatial period of 
the flow, is finite and conserved. This perturbed energy provides a useful diagnostic 
on the numerical computation. The perturbation kinetic energy is given by 
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where R, and R, are defined after (2.24). Using Green’s theorem E K  may be rewritten 
as a boundary integral : 

E, = -&PI j:%phs,. de  + &pz $% phs,.de, 
0 

so that 
- 4EK = rphyde+2AJrph$, .de.  
P1+ Pz 

Here ph and $ are respectively the average stream function and potential, and we use 
the fact that the stream function is continuous a t  the interface. The perturbation 
potential energy E ,  is given by 

Thus the total perturbation energy E is 

PI -?!!--= + P2 ~ 0 2 n p h ~ d e + 2 A [ j ~ p h $ e d e + g ~ y 2 x e d e ] .  0 

The equations of motion show that E is conserved in time. For the simulations of 
steady waves with N = 128 and At = &m, energy is conserved to better than one part 
in lo4 through several wave periods. 

The application of fourth-order polynomial extrapolation techniques in time (using 
4 previous time levels) allows the computation of a y p t  or a,u/at to a tolerance of 
with just 2 iterations per predictor-corrector step. Thus the operation count is truly 
O( N Z ) .  

I n  their simulations of steady nonlinear surface waves, Longuet-Higgins & Cokelet 
(1976) observed the onset of a high-wavenumber instability as the wave progressed 
forward in time. This instability was removed by a five-point smoothing operator 
applied every five time steps or so. Our simulations also suffer from this weak 
instability when vortex markers are used. I n  contrast, no such instability has been 
observed in similar runs by Vinje & Brevig (1981). This may be due to numerical 
diffusion introduced by their finite-difference scheme. 

When dipole markers are used, i t  is apparently not necessary to  smooth, presumably 
because the subtraction in (2.27) can be implemented more accurately than that in 
(2.28). In  our dipole simulations (which also have spectral accuracy) i t  has been 
possible to increase the time over which the code simulates waves accurately without 
any smoothing by simply increasing the number of markers. With 128 points, the 
Stokes wave travels over 2.5 wavelengths before the onset of the high-wavenumber 
instability. It may be concluded that, for surface waves, smoothing is not required 
in the dipole equations provided that a sufficiently large number of markers is used 
to resolve the interface. 

While surface waves apparently do not require smoothing, a strong instability has 
been observed in the case of travelling interfacial waves of permanent form. The origin 
of this instability of the dipole equations may be a real physical instability of the 
local shear layers in the interfacial wave. This phenomenon is now under detailed 

Having demonstrated the reliability of the iterative vortex method for finite- 
amplitude steady flows, we show that the method is capable of following unsteady 
waves well into the breaking regime. We have used as an initial condition a Stokes 

study. 
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FIGURE 4. A plot a t  various times of the profile of a breaking wave on infinite depth. The height 
of the Stokes wave used as an initial condition is 80 % of the maximum. The wave is forced by a 
moving pressure pulse of the form p(z , t )  = pa sin t sin ( s - c t ) ,  with pa = 0146. The pressure pulse 
is turned off after t = n. The profile is shown at times (a) t = 038, ( b )  t = 316 and (c)  t = 4.22. Note 
that in (c )  the wave has broken and a smooth jet has been ejected from the forward face of the 
wave. 

wave that is 80% of maximum height. A pressure distribution of the form 

p,(z , t )  = p,sintsin(x-ct) 

is applied a t  times 0 < t < 7r and is switched off at t = 77. Thus the energy is increased 
smoothly until t = 77. This run is similar to  the case considered by Longuet-Higgins 
& Cokelet (1976). As is seen in figure 4 the wave overturns and a jet of fluid is ejected 
from the forward face of'the wave. The iterative method continues to  converge until 
the curvature at the tip becomes too great to  resolve with the number of points used 
(see also Vinje & Brevig 1981). 

4. Bottom topography 
Flows such as those generated by surface waves over bottom topography or due 

to  a solid body in motion underneath an interface require Neumann boundary 
conditions at the solid boundaries in addition to the free-surface conditions. Since 
the fluid cannot penetrate a solid boundary, the normal fluid velocity a t  the body 
must equal the normal body velocity. 
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FIQURE 5. Flow geometry for interfacial flow with bottom topography. 

All potential fields may be constructed by means of surface distributions of sources 
and dipoles. It was shown in $2 that  potential flows with Dirichlet boundary 
conditions may be expressed as those due to a distribution of dipoles or vortices. The 
dipole-layer potential has jump discontinuities, but its normal derivative varies 
continuously as the surface or interface is penetrated along the normal. I n  contrast, 
the potential due to a layer of sources varies continuously as the surface is penetrated, 
but the normal derivative has a jump discontinuity. Thus i t  is natural to impose a 
distribution of sources along the solid boundary to obtain an irrotational flow with 
Neumann boundary conditions. Indeed, the use of source distributions to solve the 
Neumann problem again leads to Fredholm integral equations of the second kind. 
The kernels of these equations retain the property that the largest eigenvalue is less 
than unity in absolute value? so that the iteration methods discussed in $ 2 continue 
to  work. 

The bottom boundary and interfaces are assumed to be 2n-periodic in the 
horizontal direction. It is necessary to consider only one interface above the solid 
bottom since the generalization to several interfaces is straightforward. Using the 
complex variables introduced in $2,  we parametrize the free surface and solid 
boundary by zF(e )  and zB(e)  respectively, with 0 d e < 2n (see figure 5 ) .  The bottom 
is assumed stationary, a condition that may be easily relaxed. 

Let the dipole strength and source strength associated with the free surface and 
solid boundary be,uF(e) and a(e)/s,(e), s: = zBe 2 8 ,  respectively. The complex potential 
may be written as 

1 2n 1 2n 

@ ( z )  = Jo pF(e) z,,(e) cot +[z-zF(e) de + J a ( e )  log [sin+[z- zB(e)]] de. 
(4.1) 

0 

Defining a ( e )  = pB,(e)  and integrating by parts, we find 

See Schiffer (1959) for a discussion of the distribution of eigenvalues in multiple connected 
domains. 
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As in $2, we define the complex velocity of the free surface as 
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(4.3) 

where q*(e) = (De/zFe(e), y(e) = ,uFe(e), and (D(e) is the average complex potential at 
the interface obtained by taking the principal value of the integrals (4.1), (4.2). The 
complex velocity may also be expressed in terms of y and CT as 

The evolution equation (2.14) for pF is 

where A is the Atwood ratio (see (2.16)) for the interface. Differentiating (4.2) with 
respect to time gives 

The evolution equation (2.15) for y involves dq*/at ,  which may be obtained by 
differentiating (4.4) in time. To close the system (4.1)-(4.6), we require evolution 
equations for a or p B .  

As yet we have not imposed the condition that the normal velocity vanishes a t  
the solid bottom. This Condition, which is Im{zBeq$) = 0, where qg is the fluid 
velocity a t  the boundary, provides the necessary evolution equations for a and pB. 
Indeed, im{z,,q$) = 0 implies 

a ( e )  = 2 Im {zBe(e) __ y(e’) cotg[zB(e)-zF(e’)]de’ [ 4fri Jo2” 
(4.7) 

Alternatively, the stream function must be a constant (zero for convenience) along 
the interface. Thus 

,uB(e) = 2 Im ~ ,uF(e’) zFe(e’) cot t [zB(e) - zF(e’)] de’ i4friJ: 

Differentiating (4.8) with respect to e also gives (4.7). Finally, differentiating (4.7) 
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and (4.8) with respect to time gives 

(4.9) 

(4.10) 

Equations (4.2), (4.3), (4.5), (4.6) and (4.10) are a set of evolution equations for 
ZF, p F  and p B .  The equations for a,+/& and i+B/i?t are coupled Fredholm integral 
equations of the second kind and may be solved iteratively. Alternatively, (4.3), (4.4), 
(4.9) together with equations for +/at and dq*/dt  are the evolution equations for a 
vortex-sheeGsource representation of the free surface and solid boundary. In  both 
cases the principal-value integrals may be regularized and the equations solved 
numerically as outlined in $2. 

The rate of convergence of the iteration procedure for coupled integral equations 
like (4.5) and (4.10) is somewhat slower than for the case of infinite depth described 
in 92. For infinite depth (corresponding to a simply connected domain) the largest 
eigenvalue is essentially a function of the aspect ratio of the geometry. For finite 
depth, which corresponds to a doubly connected domain, the largest eigenvalue can 
be related to the depth-to-wavelength ratio. As the geometry becomes shallower the 
dominant eigenvalue tends toward 1 .  Indeed, for linear shallow-water theory the 
dominant eigenvalue is O(exp (-kd)), where d is the depth. Because of this, a larger 
number of iterations are needed in the initial stages of the integration forward in time. 
However, once a sufficient number of previous time levels are known, extrapolation 
schemes may be used to reduce the number of iterations to only two or three per time 
step. 

In  all runs made with this method we used 128 points on the free surface and 128 
on the bottom. An equivalent simulation using Green’s third formula would entail 
the inversion of a 256 x 256 matrix at each time step. The use of fewer points results 
in inadequate resolution of regions of large curvature a t  the interface. With 128 
markers on the free surface and on the bottom, our iterative methods require only 
about 0.1 s per time step on a Cray-1 computer. 

Next we report results obtained by applying the dipole-source technique to the 
calculation of periodic surface waves over periodic bottom topography. The initial 
conditions for all the nonlinear runs reported below are 

} (4.11) 
x ( e , t = O )  = e ,  y ( e , t = O )  = acose, xB(e) = e, yB(e) = -d+bsine, 

y(e , t=O)  = a(tanh d)- i  (1  + tanh d )  cos e ,  a ( e ,  t = O )  = -a (tanhd)+ sin e .  

For small values of the amplitude a and 6 = 0 these conditions correspond to  a linear 
wave that propagates to the right at the speed (tanh a)$. The period of the linear wave 
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FIQURE 6. A plot a t  various times of the profile of a plunging breaker on finite depth. The initial 
condition corresponds to a cosine wave with a large initial amplitude a = 0.5 (see (4.1 1 ) ) .  The wave 
is plotted a t  times ( a )  t = 0.46, ( b )  t = 1.85, and ( c )  t = 3.1. 

is to = 271 (tanh d)-i. I n  order to simulate a plunging breaker we choose a = 0.5, d = 1 
and 6 = 0. The results are plotted in figure 6. At time t = 0.26t0 = 1-85 the profilc 
has become vertical, and a t  t = 0.43, z 3.1 a jet has been ejected from the forward 
face of the crest. The profile is similar to that of a plunging brcaker. 

A spilling breaker is generated by the initial conditions a = 0.2, d = 0.5 and 6 = 0.1. 
This is a slightly unsteady wavc propagating over a sinusoidal bottom. A sequence 
of wave profiles is plotted in figure 7. At t = 0.43t0 z 4.0 the wave crest is spilling. 

The dipole-source technique is also capable of simulating motion over more 
distorted topographies. In  figure 8 we plot the time evolution of a wave with initial 
conditions d = - 0 5 ,  a = 0 2  and h = -0-1 in (4.11), but with a bottom 1-coordinate 
parametrized as 

x B ( p )  = e-sinp. 

The bottom therefore resembles a rising step. The technique gives reliable wavc 
profiles well after the wave crest has become vertical. 

In  order to provide a more detailed picture of the dynamics of the plunging breaker 
we have examined the velocities and accelerations of the fluid surface. Following 
Peregrine, Cokelet &, McIver (1980), we plot a phase (hodograph) plane of the surface 
x-velocity versus the y-velocity. By drawing the radius vector to  any point on this 
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FIGURE 7 .  A plot a t  various times of the profile of a spilling breaker. The initial condition 
corresponds to a cosine wave with initial amplitude a = 0.2. The bottom topography has the form 
zB = e + i (  -0.5+0.1 sin e ) .  The wave is plotted a t  times ( a )  t = 0.46, ( 6 )  t = 3.70 and ( c )  t = 4.0. 

hodograph plane the magnitude and direction of the velocity may be deduced. We plot 
the results for the plunging wave (see figure 6) in figure 9. The curves are plotted a t  
time intervals of &,to, where to = 2.rr (tanh I)-$ z 7.2. The crest of the wave is located 
a t  the rightmost point of the hodograph, while the trough corresponds to the leftmost 
point. The front (back) of the wave corresponds to the upper (lower) half of the 
elliptical curves. As the wave steepens, the velocities at the crest increase. A t  the point 
of plunging the crest velocities point downwards toward the interface. The magnitudes 
of the velocities in the forward jet are greater than the nonlinear phase speed of the 
highest Stokes wave a t  this depth. 

The accelerations for this plunging breaker are plotted in figure 10. At early times 
the acceleration is essentially orthogonal to the velocity vector. The front and back 
of the travelling wave now correspond to the rightmost and leftmost points 
respectively of the elliptical profiles, while the crest and trough are located at the 
bottom and top. 

As the wave approaches breaking, the surface profiles of acceleration depart 
markedly from the steady state shown in figure 10. The largest accelerations are 
located in the region just below the crest. These accelerations are a t  least four to five 
times larger than the acceleration due to gravity and are pointed in the forward 
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Y 

FIGURE 8. A plot a t  various times of the profile of a breaker over a descending step. The initial 
conditions correspond to a cosine wave with initial amplitude a = 0.2. The bottom topography has 
the form zB = (e-sin e ) + i  (-0.5-01 sin e ) .  The wave is plot,ted at times (a) t = 046, ( b )  t = 1.84 
and (c) t = 2.472. 

x 
Y 
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FIGURE 9. A phase portrait of the y-velocity versus the z-velocity for the plunging 
breaker shown in figure 6. 
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FIGURE 10. A phase portrait of the y-acceleration versus the z-acceleration for the plunging breaker 
shown in figure 6. The free-fall point is located a t  (0.0, - 1.0). 

direction. Peregrine et at. have also observed large accelerations in the crest region 
in qualitative agreement with our results. 

Despite the large forward accelerations observed just under the crest of the breaker, 
the tip of the wave appears to  be in free fall. At time t = 0.28, to  FZ 2.0 the acceleration 
a t  the tip exceeds g (1.0 in our units) by approximately 30 yo. The forward face of 
the wave is essentially vertical a t  this time. A t  later times the acceleration at the 
tip decreases to 1.0. Indeed, a t  t = 0.41, to FZ 2.97 there is a region about the tip in 
which the fluid accelerations vary by less than five per cent from the free-fall value. 
In  this region the acceleration vectors within the same level of variation point in the 
- y-direction. 

The qualitative similarity of our results with those of Peregrine et al. indicates that 
the flow in the plunging region of breakers is a local phenomenon. The remainder of 
the wave is subject to  relatively low accelerations and does not appear to  influence 
the dynamics of the plunging jet. 

Longuet-Higgins (1981) has recently proposed several analytic forms for the 
c.omplex potential in the breaking region. A detailed comparison between this 
theoretical approach and the numerical approach of this section is currently under 
way. 

5. Resonant interaction of surface and interfacial gravity waves 
Triad resonant interactions between surface and interfacial gravity waves in a 

stratified fluid account for some of the energy transfer from wind-driven surface waves 
to internal waves. Bmong others, Hasselman (1966) and Watson, West & Cohen 
(1976) have attempted to include the effect of resonant triad interactions in their 
study of ocean dynamics, but the work is based on weakly nonlinear perturbation 
theory and the conditions under which the perturbation analysis is valid are not yet 
clear. By considering a simple model of the ocean, we can use our numerical technique 



494 G. R. Baker ,  D .  I .  Meiron and S. A .  Orszag 

to study nonlinear triad resonant interactions and shed some light on the accuracy 
of the perturbation analyses. 

We assume that the ocean consists of two layers of incompressible, irrotational, 
inviscid fluid of constant, but different, densities. The top layer has density p’ and 
thickness d ,  while the bottom layer has density p > p’ and is infinitely deep. Although 
this model of the ocean is rather simple, it has been used before in studies of ocean 
dynamics by Ball (1964), Kenyon (1966), and others. Moreover, Craik & Adam (1979) 
have applied weakly nonlinear perturbation theory to stratified three-layer fluid flow, 

Csing the notation of Craik & Adam (1979), we choose p, = 0, p, = p’ = 0787 775, 
p3 = 1 ,  u1 = u2 = u3 = 0, y, = y2 = 0, d = 1 and g = 1. The three modes that form 
a resonant triad are given by wavenumbers k,  = 3 ,  k ,  = 1 ,  k,  = 2 and frequencies 
w1 = 2/3 (a surface wave), w 2  = 4 3 - 4 2  (an interfacial wave), w 3  = 4 2  (a surface 
wave) respectively. Our choice of the above parameters was guided by several 
considerations. First, we require that the wavenumbers be small so that the numerical 
computation of the evolution of the interface does not require an excessive number 
of markers. Secondly, we require that the timescale for the resonant interaction be 
reasonably small so that the computation can be done relatively quickly. Finally, 
we choose integer values for the wavenumbers consistent with a spatial periodicity 
of 2n. 

We denote the complex amplitudes of the surface elevation (Ai5) in Craik & Adam’s 
notation) corresponding to the three modes as Ail) = u3, Ai2) = - ia,, Ai3) = a2 so that 
the subscript on a refers directly to  the value of the wavenumber. Direct substitution 
into the evolution equations for the complex amplitudes (equation (4.3) in Craik & 
Adam) gives the following system: 

da 
2 = 0-02688a,a3, @? = 3.384a1a3, - = -4*162a,a,. 
dt dt dt 

For initial conditions, we take a,(O) = 0, a2(0) = E and a,(O) = # E ;  thus the surface 
waves have the property that a k  = 2~ initially. The system (5.1) may be solved 
exactly in terms of elliptic functions : 

a,  = 0.04952~ sd (0*3903~t), 
a; = e2 + 125.9a:, 
CL; = $E’ - 154.8~:. 

( 5 . 2 ~ )  
(5.2b) 

( 5 . 2 ~ )  

We report results for the three cases c = 0.025, E = 0.05 and E = 0.1. In  order to 
compare our results with the predicted results in (5 .2) ,  we compute the amplitudes 
ak = 151 of the modes Fk with wavenumbers k = 1 ,  2 ,  3, where 

(5.3) 

and zl(e)  = q ( e ) + i y , ( e )  is the location of the ocean surface. The integrals were 
calculated with spectral accuracy by usimg the trapezoidal rule. 

We compare our results with those of (5.2) in figure 1 1  and 12 for E = 0.025 and 
0.05 respectively. Instead of plotting a,, the surface elevation that corresponds to the 
internal ( k  = 1 )  wave, we have plotted b, ,  the amplitude of the elevation of the internal 
interface. Perturbation theory predicts 

(5.4) b, = 0.4636~ sd (0.3903t.t). 



Vortex methods for free-surface $ow 

0.3 

Ll U 

c = 0.2-  
E" < 

495 

a2> 012 
- 

- 

1 

FIGURE 11. The temporal change in the absolute value of the amplitudes of the modes forming a 
resonant triad; perturbation theory with E = 0.025 predicts the curves labelled 6, (an interfacial 
wave with k = l ) ,  a2 (a surface wave with k = 2) and u3 (a  surface wave with k = 3).  The fully 
nonlinear numerical simulations give the curves labelled p, (the interfacial wave with k = I ) ,  a2 
(the surface wave with k = 2), and a3 (the surface wave with k = 3). 
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FIGURE 12. Same as figure 11 except E = 0.05. 

The corresponding nonlinear amplitude with absolute value P k  = IFk I is computed 
from our results by using the internal interface coordinates z 2 ( e )  = x2(e) + iy2(e) 
in (5.3). 

For E = 0.025 (figure l l ) ,  there is excellent agreement between the perturbation 
results and the nonlinear results computed by our technique. For the numerical 
computation, we used 64 points along each interface and a time step of &n. In figure 
11 the results are given for t < 150. Shortly thereafter our calculations lose accuracy; 
energy conservation (variations were less than 0001 yo) deteriorates and small-scale 
oscillations appear in the interfacial profiles. By increasing the number of points and, 
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FIQURE 13. ( a )  Initial profiles of the surface (y = 0) and internal interface (y = - 1). ( b )  Profiles of 
the surface (y = 0) and internal interface (y = - 1) a t  time t = 2.513. 

if necessary, decreasing the time step, the calculations can be extended accurately 
farther in time but for the present purposes the results were deemed sufficient. 

For E = 0.05 (figure 12), the accuracy of the perturbation analysis deteriorates. 
Besides the occurrence of high-frequency modulation of the amplitudes, presumably 
resulting mainly from 0(e2) contributions, there is a slight mean deviation between 
the nonlinear results and the predictions of perturbation theory. I n  this case, we use 
128 points per interface and a time step of &p. The accuracy of our results is 
confirmed by energy conservation (variations were less than 0.01 yo ) and by comparison 
with the results using 64 points per interface and a time step of &r. 

For E = 0 1 ,  the triad resonance leads directly to  the breaking of the ( I c  = 2) surface 
wave. We illustrate this result in figure 13; we show the initial interfacial profiles and 
later profiles where breaking is about to occur. Obviously the perturbation analysis 
is not valid in this case. I n  conclusion we see that our results are consistent with the 
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estimate of Craik & Adams that accuracy of the perturbation results requires 
ak 5 0-05 or a / h  5 0.01, where h is the wavelength of the primary mode. It seems 
that the perturbation theory is only valid for very-small-amplitude waves. 

6. Generalizations and other applications 
In this paper, equations determining the motion of free surfaces of incompressible, 

inviscid irrotational flow were obtained as Fredholm integral equations of the second 
kind. The advantage of such a formulation is that the resulting equations may be 
solved iteratively by constructing successive terms of a Neumann series. The resulting 
scheme is globally convergent. Moreover, improved first estimates for the solution 
at time t can be obtained by standard extrapolation techniques from values a t  
previous time steps. I n  this way, the solutions are obtained using only a few (2-5) 
iterations per time step, even for severely deformed geometries. 

While the equations given in $2 are specifically for two-dimensional flow, there is 
a more general formulation, valid in three-dimensional flow. The potential evaluated 
at the field point r is given by 

s (6.1) 
a 

O(r)  = pF(r’)-7 G(r,r’)dr’+ gB(r’)G(r,r’)dr’, I a v  

where G(r, r‘) is the free-space Green function for Laplace’s equation, aG/av’ is the 
normal derivative on the surface, and the integration is over free surfaces for pF and 
over solid boundaries for uB. For two-dimensional flow, G = (277-l Ir-r’l; for 
three-dimensional flow, G = (47r)-l/I r - r’l ; for axisymmetric flow G can be expressed 
in terms of elliptic functions of the first kind. 

Continuity of normal velocities at free surfaces is automatically satisfied by (6.1), 
but the requirement that the fluid has no normal velocity relative to solid boundaries 
leads to Fredholm integral equations of the second kind for pB. The Neumann series 
for the solution to  these equations, involving any of the Green functions men- 
tioned above, are globally convergent so the equations can be solved iteratively. 

This work was supported by the General Hydromechanics Research Program of 
the Naval Sea Systems Command under ONR Contract N00014-80-(2-0129, ONR 
Contract N00014-77-C-0138, AFOSR Grant no. 77-3405, and the Los Alamos 
Scientific Laboratory, which is supported by the Department of Energy. 

Appendix. Surface and interfacial waves of permanent form 
In  a stably stratified fluid, (2.6) and (2.14) admit nonlinear travelling-wave solutions 

of permanent form. For Atwood ratio A = + 1 (pz = 0) these solutions correspond to 
the well-known Stokes surface waves. One way to obtain the profiles and nonlinear 
phase speeds of Stokes waves is to use Pad6 approximants to sum a computer- 
extended series in the wave height. This approach was applied by Holyer (1979) in 
her study of interfacial waves with 0 < A < 1. 

Many series terms are required for the Pad6 approximants to  converge, and 
i t  has been found that methods based on nonlinear integral equations offer increased 
accuracy a t  these amplitudes. Several formulations are available for Stokes waves 
( A  = + 1) .  For example, Chen & Saffman (1979) use a vortex-sheet representation to 
derive nonlinear integrodifferential equations for permanent surface waves. For 
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interfacial waves Vanden-Broek (1980) has recently formulated an integral equation 
using the steady-state potential coordinate to parametrize the interface. 

In this appendix we derive yet another integral equation for interfacial waves. It 
has the advantage that the steady-state dipole strength is computed directly along 
with the shape of the interface and nonlinear phase speed. This solution can then be 
used as an initial condition for (2.6) and (2.14). 

We shall restrict ourselves to symmetric wave profiles. The technique may be 
readily extended to waves of mixed parity using the methods described by Chen & 
Saffman. The specialization to even profiles allows us to restrict the region of 
integration to 0 < x < n. Then the interface and dipole strength have the Fourier 
expansions 

00 m 

z(e) = e-a sin e, y(e) = x H n  cosne, p(e) = M,sinne. (A 1) 
n=1 n=l 

We choose to work in terms of the dipole-sheet formulation as fewer derivatives with 
respect to e are required. The x-coordinate of the interface is specified, while the 
y-coordinates and dipole strength p are the unknowns. In addition, we must determine 
the phase speed c of the nonlinear wave. 

In  the rest frame of the wave the kinematic interface condition dyldt = v is simply 

dy dx 
( u - c )  - = II -. 

de de 

The dynamic interface condition (2.14) becomes 

(u-c)- Y = - 2 A  
xe 

where wc choose 01 = 0 in (2.7), g = 1, and 

" y(e') z e ( e ) -  y(e) z z ( e ' )  

ze(e) 
oot+[z(e)+z*(e')] de' .  (A 4) 

K is the Bernoulli constant. Kote that (A 4) makes explicit use of the symmetries 
of y(e) and p(e). I n  order to determine y(e) and p(e) uniquely we must fix the wave 
height and mean ievel of the wave. This is done through the auxiliary conditions 

lo2= y(e) g d e  = 0, +[y(e = 0) - y(e = n)] = h, (A 5 )  

where h is the specified height. 
Evaluating (A 2) ,  (A 3) at the N +  1 points p j  = nj/Ar (j = 0, . .  ., N ) ,  2 N + 2  

equations are generated. With the inclusion of the constraints (A 5). there are 2 N + 4  
equations for 2N+4 unknowns: y3, pj (j = 0, . . ., N ) .  c and K .  However an examina- 
tion of the symmetry properties of x, y, u and v reveals that the left- and right-hand 
sides of (A 2) vanish identically for P = 0 and e = n, reducing the number of equations 
by two. A corresponding reduction in the number of variables is achieved by noting 
that both p ( ~  = 0) and p(e = n) must also vanish by symmetry. 

In  order to solve (A 2), ( A  3) it is necessary to  relate y = pe and ye to p and y 
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FIGURE 14. A plot of Stokes wave profiles (A = 1) at amplitudes 
a = 00(0~1)0~9am,,, where amax = 043. 
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FIGURE 15. A plot of interfacial wave profiles (A = 08182) at amplitudes 
a = 00(01)0~9a,,,, where amax = 071.  

through a differential operator. Vanden-Broek (1980) uses a high-order finite- 
difference operator. We prefer to use a spectral operator 

N N 

i=l j=1 
Y ( i )  = z B i j P ( j ) ,  Y A i )  = 1 A,Y(j). 

Here 2 N  njk nik 2 njk nik 
A . .  = __ kcos-sin-, B,, = - ksin-cos-, 

NCj k-0 N N  Ncj k=O N N  

where c0 = cN = 2 ,  ci = 1 (0 < j  < N ) .  
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FIGURE 16. A plot of nearly Boussinesq wave profiles (A = 0005) at amplitudes 
a = OO(O~l)(OO)am,,, where amax = 1 .1 .  

It is crucial that  the accuracy of the quadrature scheme used in evaluating the 
integrals be comparable to the high accuracy afforded by the spectral operators. The 
most accurate quadrature for this purpose is the trapezoidal rule, but i t  is important 
that  the limiting values in the integrands as e + e‘ be taken into account. With these 
provisions the equations (A 2)-(A 5 )  may be solved by Newton’s method. 

The results for the three Atwood ratios A = + 1, A = + 0.8181 and A = +0.005 are 
shown in figures 14-16 respectively. The Atwood ratio of +0005 gives nearly a 
Boussinesq interfacial wave. For the waves shown in figures 14-16, 65 points were 
used. It is interesting to  note that there is no need to cluster points near the crest 
as was done by Chen & Saffman in order to obtain convergence. This remained true 
even for wave amplitudes that were 99 yo of the maximum. This is due in part to the 
high accuracy of the spectral derivative. 
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